A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines

نویسندگان

  • Tian-Shyug Lee
  • I-Fei Chen
چکیده

The objective of the proposed study is to explore the performance of credit scoring using a two-stage hybrid modeling procedure with artificial neural networks and multivariate adaptive regression splines (MARS). The rationale under the analyses is firstly to use MARS in building the credit scoring model, the obtained significant variables are then served as the input nodes of the neural networks model. To demonstrate the effectiveness and feasibility of the proposed modeling procedure, credit scoring tasks are performed on one bank housing loan dataset using cross-validation approach. As the results reveal, the proposed hybrid approach outperforms the results using discriminant analysis, logistic regression, artificial neural networks and MARS and hence provides an alternative in handling credit scoring tasks. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining the Customer Credit Using Classification and Regression Tree and Multivariate Adaptive Regression Splines

Credit scoring has become a very important task as the credit industry has been experiencing severe competition during the past few years. The artificial neural network is becoming a very popular alternative in credit scoring models due to its associated memory characteristic and generalization capability. However, the relative importance of potential input variables, long training process and ...

متن کامل

A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring

A Bayesian latent variable model with classification and regression tree approach is built to overcome three challenges encountered by a bank in credit-granting process. These three challenges include (1) the bank wants to predict the future performance of an applicant accurately; (2) given current information about cardholders’ credit usage and repayment behavior, financial institutions would ...

متن کامل

ارزیابی عملکرد مدل‌های محاسباتی نرم در تخمین ارتفاع امواج در بندر انزلی

Wind waves are one of the important, fundamental and interesting subjects in port and coastal engineering. Thus, within years, different methods such as experimental methods, numerical modeling and soft computing methods have been employed to estimate the wave parameters. In this study, waves height in Anzali port is predicted using soft computing models such as multivariate adaptive regressi...

متن کامل

Credit scoring using the hybrid neural discriminant technique

Credit scoring has become a very important task as the credit industry has been experiencing double-digit growth rate during the past few decades. The artificial neural network is becoming a very popular alternative in credit scoring models due to its associated memory characteristic and generalization capability. However, the decision of network’s topology, importance of potential input variab...

متن کامل

An Efficient Hybrid Intrusion Detection System based on C5.0 and SVM

Nowadays, much attention has been paid to intrusion detection system (IDS) which is closely linked to the safe use of network services. Several machine-learning paradigms including neural networks, linear genetic programming (LGP), support vector machines (SVM), Bayesian networks, multivariate adaptive regression splines (MARS) fuzzy inference systems (FISs), etc. have been investigated for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2005